What are the Chemical Elements of P20 Die Steel
P20 die steel is suitable for large and medium-sized precision molds. It is suitable for long-term production of high-quality plastic molds for large formwork. This P20 plastic die steel has good machinability and can be generally polished.
What are the Chemical Elements of P20 Die Steel?
Carbon (C): The carbon content in the steel increases, the yield point and tensile strength increase, but the plasticity and impact resistance decrease. When the carbon content exceeds 0.23%, the weldability of the steel deteriorates, so the low alloy used for welding For structural steel, the carbon content generally does not exceed 0.20%. High carbon content also reduces the atmospheric corrosion resistance of steel. High carbon steel in the open yard is susceptible to corrosion; in addition, carbon can increase the cold brittleness and age sensitivity of steel.
Silicon (Si): Silicon is added as a reducing agent and a deoxidizer during the steel making process, so the killed steel contains 0.15-0.30% of silicon. If the silicon content in the steel exceeds 0.50-0.60%, silicon is an alloying element. Silicon can significantly improve the elastic limit of steel, yield point and tensile strength, so it is widely used as spring steel. Adding 1.0-1.2% silicon to the quenched and tempered structural steel increases the strength by 15-20%. Silicon combined with molybdenum, tungsten, chromium, etc., has the effect of improving corrosion resistance and oxidation resistance, and can manufacture heat-resistant steel. Silicon-containing 1-4% low carbon steel, with a very high magnetic permeability, used in the electrical industry to make silicon steel sheet. An increase in the amount of silicon reduces the weldability of the steel.
Manganese (Mn): In the process of steel making, manganese is a good deoxidizer and desulfurizer. Generally, steel contains 0.30-0.50% manganese. When adding more than 0.70% of carbon steel, even if it is "manganese steel", it has more toughness than ordinary steel, and has higher strength and hardness, improves the quenchability of steel, and improves the hot workability of steel. For example, 16Mn steel is 40% higher than the A3 yield point. 11-14% manganese containing steel has extremely high wear resistance, used in excavator buckets, ball mill liners, etc. The increase in the amount of manganese weakens the corrosion resistance of the steel and reduces the weldability.
Phosphorus (P): In general, phosphorus is a harmful element in steel, which increases the cold brittleness of steel, deteriorates welding performance, reduces plasticity, and deteriorates cold bending performance. Therefore, it is usually required that the phosphorus content in the steel is less than 0.045%, and the demand for high-quality steel is lower.
Sulfur (S): Sulfur is also a harmful element under normal conditions. The steel is made to be hot brittle, reduce the ductility and toughness of the steel, and cause cracks during forging and rolling. Sulfur is also detrimental to weldability and reduces corrosion resistance. Therefore, the sulfur content is usually required to be less than 0.055%, and the high-quality steel is required to be less than 0.040%. The addition of 0.08-0.20% sulfur to the steel improves the machinability and is commonly referred to as free-cutting steel.